10 research outputs found

    Anticollusion solutions for asymmetric fingerprinting protocols based on client side embedding

    Get PDF
    In this paper, we propose two different solutions for making a recently proposed asymmetric fingerprinting protocol based on client-side embedding robust to collusion attacks. The first solution is based on projecting a client-owned random fingerprint, securely obtained through existing cryptographic protocols, using for each client a different random matrix generated by the server. The second solution consists in assigning to each client a Tardos code, which can be done using existing asymmetric protocols, and modulating such codes using a specially designed random matrix. Suitable accusation strategies are proposed for both solutions, and their performance under the averaging attack followed by the addition of Gaussian noise is analytically derived. Experimental results show that the analytical model accurately predicts the performance of a realistic system. Moreover, the results also show that the solution based on independent random projections outperforms the solution based on Tardos codes, for different choices of parameters and under different attack models

    VISION: a video and image dataset for source identification

    Get PDF
    Abstract Forensic research community keeps proposing new techniques to analyze digital images and videos. However, the performance of proposed tools are usually tested on data that are far from reality in terms of resolution, source device, and processing history. Remarkably, in the latest years, portable devices became the preferred means to capture images and videos, and contents are commonly shared through social media platforms (SMPs, for example, Facebook, YouTube, etc.). These facts pose new challenges to the forensic community: for example, most modern cameras feature digital stabilization, that is proved to severely hinder the performance of video source identification technologies; moreover, the strong re-compression enforced by SMPs during upload threatens the reliability of multimedia forensic tools. On the other hand, portable devices capture both images and videos with the same sensor, opening new forensic opportunities. The goal of this paper is to propose the VISION dataset as a contribution to the development of multimedia forensics. The VISION dataset is currently composed by 34,427 images and 1914 videos, both in the native format and in their social version (Facebook, YouTube, and WhatsApp are considered), from 35 portable devices of 11 major brands. VISION can be exploited as benchmark for the exhaustive evaluation of several image and video forensic tools

    Hybrid reference-based Video Source Identification

    No full text
    Millions of users share images and videos generated by mobile devices with different profiles on social media platforms. When publishing illegal content, they prefer to use anonymous profiles. Multimedia Forensics allows us to determine whether videos or images have been captured with the same device, and thus, possibly, by the same person. Currently, the most promising technology to achieve this task exploits unique traces left by the camera sensor into the visual content. However, image and video source identification are still treated separately from one another. This approach is limited and anachronistic, if we consider that most of the visual media are today acquired using smartphones that capture both images and videos. In this paper we overcome this limitation by exploring a new approach that synergistically exploits images and videos to study the device from which they both come. Indeed, we prove it is possible to identify the source of a digital video by exploiting a reference sensor pattern noise generated from still images taken by the same device. The proposed method provides performance comparable with or even better than the state-of-the-art, where a reference pattern is estimated from video frames. Finally, we show that this strategy is effective even in the case of in-camera digitally stabilized videos, where a non-stabilized reference is not available, thus solving the limitations of the current state-of-the-art. We also show how this approach allows us to link social media profiles containing images and videos captured by the same sensor

    A Video Forensic Framework for the Unsupervised Analysis of MP4-Like File Container

    No full text
    corecore